


# TCG3 ( ) 2 ( )

The all-round talent.



# 150 years of experience for your success.

With MWM, you benefit from 150 years of experience in gas engine technology and energy generation. Since 2011, we have been part of the network of Caterpillar Inc., gaining access to international expertise and resources on the basis of which we can develop individual turnkey solutions for you. Draw on the security and experience of a specialist that has installed thousands of highly efficient and reliable plants around the globe.





With MWM Digital Power, the energy market enters a new age. State-of-the-art components combined with smart and secure data analysis ensure improved maintenance, efficiency and optimized capacity utilization of your plants.

The MWM TCG 3020 gas gensets are more than merely the next iteration of MWM's proven gas gensets. The new gas gensets and turnkey solutions represent an entirely new development – perfectly tailored to the challenges of Industry 4.0 and the changed framework conditions of a dynamic energy market in the age of global value chains.







#### ■ High Profitability

- ✓ High electrical and overall efficiency
- ✓ Low oil consumption 0.15 g/kWh
- ✓ Up to 80,000 oh until major overhaul results in high profitability for the customer

#### High Reliability

- ✓ Reliable and proven core engine
- ✓ Upgraded with state of the art technologies
- ✓ Extended maintenance intervals

#### High Efficiency

- ✓ Increased electrical efficiency up to 45% for natural gas and up to 43.6% for biogas
- ✓ Increased electrical output up to 2,300 kW<sub>el</sub>
- ✓ Optimal combination of efficiency and reliability

#### Varieties of Gases and Applications

- ✓ Available for different fuels like natural gas, biogas, landfill gas and propane gas
- ✓ Optimized variants for different applications like high efficiency, flexibility, CHP, biogas and propane
- ✓ Available in 50 Hz and 60 Hz

#### ■ New Engine and Plant Control System TPEM

- ✓ Hardware and Software for the engine and holistic plant control
- ✓ Enables full power capability of the genset with maximum reliability, availability, performance and usability

#### ■ High Power Density

✓ Compact design: The TCG 3020 Series delivers up to 18% more power output at the same size as its predecessor

### Benefit from the TCG 3020!

Contact us: www.mwm.net or info@mwm.net

# Superior operation and efficiency.



#### Reduced operating costs

Due to high efficiency, low oil consumption and low service costs



#### High Reliability

Providing up to 80,000 oh until major overhaul due to improved reliability



#### Increased performance

More power with higher efficiency



#### Tailor-made for your application

Optimized variants for all kind of gases and boundary conditions



#### Hydrogen

As an admixture to natural gas enables operation with up to 25 vol.% hydrogen – retrofit kits are available

#### One genset, various applications

# Combined Heat and Power (CHP)



Utilities
District heating
Industrial
Hospitals
Airports
Greenhouses

#### **Electrical Power**



Energy services Independent power producers Utilities Industrial

#### **Biogas**



Agriculture Food industry Sewage Landfill

# The TCG 3020: Successful deployment.

#### Krikato BVBA, Belgium

The TCG 3020 V20 is the second MWM genset for tomato producer Krikato BVBA in Belgium. In 2012, they decided to use the MWM brand – at that time, a TCG 2020 V12 – for the construction of a CHP. They once again selected an MWM genset for the extension of their greenhouse. Since June 2020, the two gensets together have been generating 3.5 MW of electrical and 4.2 MW of thermal power and reliably supply the greenhouse, which has been expanded from 1.2 to 1.7 hectares, with electricity and heat.

By using SCR catalysts, the carbon dioxide in the exhaust gas released by the natural gas-powered MWM gas gensets can be used for organic carbon fertilization of the plants after proper treatment, which has a positive effect on growth and yield.

1x MWM TCG 2020 V12, 1x MWM TCG 3020 V20 | Go-live: 2012 and June 2020







## Technical data 50 Hz $(NO_x \le 250 \text{ mg/Nm}^{31})$

#### Natural gas applications

| TCG 3020 Series              |                   | V12      | V12             | V16             | V16             | V20             | V20             | V20              | V20              |
|------------------------------|-------------------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|
| Configuration                |                   | $P^{2J}$ | R <sup>3]</sup> | P <sup>2)</sup> | R <sup>3]</sup> | P <sup>2]</sup> | R <sup>3]</sup> | PV <sup>4]</sup> | RV <sup>5)</sup> |
| Bore/stroke                  | mm                |          |                 |                 | 170             | /195            |                 |                  |                  |
| Displacement                 | $dm^3$            | 53.0     | 53.0            | 71.0            | 71.0            | 89.0            | 89.0            | 89.0             | 89.0             |
| Engine speed                 | min <sup>-1</sup> |          |                 |                 | 1,5             | 500             |                 |                  |                  |
| Mean piston speed            | m/s               |          |                 |                 | 9               | .8              |                 |                  |                  |
| Length 6)                    | mm                | 5,080    | 5,080           | 6,100           | 6,100           | 6,600           | 6,600           | 6,983            | 6,983            |
| Width 6)                     | mm                |          |                 |                 | 1,8             | 315             |                 |                  |                  |
| Height 6)                    | mm                | 2,190    | 2,190           | 2,190           | 2,190           | 2,190           | 2,190           | 2,385            | 2,385            |
| Dry weight genset            | kg                | 12,900   | 12,900          | 17,400          | 17,400          | 21,400          | 21,400          | 16,965           | 16,965           |
| Electrical power 7]          | kW                | 1,380    | 1,380           | 1,840           | 1,840           | 2,300           | 2,300           | 2,000            | 2,000            |
| Mean effective pressure      | bar               | 21.5     | 21.5            | 21.5            | 21.5            | 21.5            | 21.5            | 18.6             | 18.6             |
| Thermal output <sup>8)</sup> | ±8% kW            | 1,359    | 1,431           | 1,835           | 1,910           | 2,255           | 2,391           | 2,031            | 2,123            |
| Electrical efficiency 7]     | %                 | 43.9     | 42.9            | 43.6            | 42.9            | 44.0            | 42.9            | 43.4             | 42.6             |
| Thermal efficiency 7]        | %                 | 43.2     | 44.5            | 43.5            | 44.5            | 43.1            | 44.6            | 44.1             | 45.2             |
| Total efficiency 7)          | %                 | 87.1     | 87.4            | 87.1            | 87.4            | 87.1            | 87.5            | 87.5             | 87.8             |

#### **Biogas applications**

Sewage gas  $(65\% CH_4/35\% CO_2)$ Biogas (50% CH<sub>4</sub> / 50% CO<sub>2</sub>) Landfill gas (50 % CH, / 27 % CO, Rest N)

| TCG 3020 Series              |                              |        | V12     | V16     | V20     | V20               |  |  |  |  |
|------------------------------|------------------------------|--------|---------|---------|---------|-------------------|--|--|--|--|
| Configuration                |                              |        | $X^{9}$ | $X^{9}$ | $X^{9}$ | XV <sup>10]</sup> |  |  |  |  |
| Bore/stroke                  |                              | mm     |         | 170,    | /195    |                   |  |  |  |  |
| Displacement                 |                              | $dm^3$ | 53.0    | 71.0    | 89.0    | 89.0              |  |  |  |  |
| Engine speed                 |                              |        |         | 1,500   |         |                   |  |  |  |  |
| Mean piston speed            | <b>Mean piston speed</b> m/s |        |         | 9.      | .8      |                   |  |  |  |  |
| Length 6)                    |                              | mm     | 5,080   | 6,100   | 6,600   | 6,983             |  |  |  |  |
| Width 6]                     |                              | mm     |         | 1,8     | 315     |                   |  |  |  |  |
| Height 6]                    |                              | mm     | 2,190   | 2,190   | 2,190   | 2,385             |  |  |  |  |
| Dry weight genset            |                              | kg     | 12,900  | 17,400  | 21,400  | 16,965            |  |  |  |  |
| Electrical power 7)          |                              | kW     | 1,380   | 1,840   | 2,300   | 2,000             |  |  |  |  |
| Mean effective pressure      |                              | bar    | 21.5    | 21.5    | 21.5    | 18.6              |  |  |  |  |
| Thermal output <sup>8]</sup> | ±8%                          | kW     | 1,407   | 1,878   | 2,346   | 2,097             |  |  |  |  |
| Electrical efficiency 7]     |                              | %      | 42.6    | 42.6    | 42.7    | 42.2              |  |  |  |  |
| Thermal efficiency 7]        |                              | %      | 43.4    | 43.5    | 43.5    | 44.3              |  |  |  |  |
| Total efficiency 7]          |                              | %      | 86.0    | 86.1    | 86.2    | 86.5              |  |  |  |  |

#### Propane gas applications

| V20              |  |
|------------------|--|
| Z <sup>11]</sup> |  |
| 170/195          |  |
| 89.0             |  |
| 1,500            |  |
| 9.8              |  |
| 6,500            |  |
| 1,815            |  |
| 2,190            |  |
| 17,980           |  |
| 1,880123         |  |
| 17.5             |  |
| 2,063            |  |
| 41.8             |  |
| 45.9             |  |
| 87.7             |  |
|                  |  |

Data for special gases and dual gas operation on request.

The values given on these datasheets are for information purposes only and not binding. The information given in the offer is decisive.

<sup>1)</sup> NO<sub>3</sub> < 250 mg/Nm³; exhaust gas dry at 5% O<sub>2</sub>
2) P = High Efficiency. Optimized for high electrical efficiency.
3) R = High Response. Optimized for high total efficiency.
4) PV = High Efficiency for Requested Power. Optimized for high electrical efficiency at requested power.
5) RV = High Response for Requested Power. Optimized for high total efficiency at requested power.

for high total efficiency at requested power.

6) Transport dimensions for gensets, components set up separately must be taken into consideration.

According to ISO 8528-1 at U = 0.4 kV, cosphi = 1.0 for 50 Hz, a methane number of MN 80 for natural gas, MN 34 for propane and MN 134 (sewage gas) for biogas applications.

<sup>8)</sup> Exhaust gas cooled to 120 °C for natural gas and 150 °C for biogas.

<sup>9)</sup> X = Biogas. Optimized for operation with biogases.
10) XV = Biogas for Requested Power. Optimized for operation with biogases at requested power.

<sup>11]</sup> Z = Propane. Optimized for operation with propane. 12] 1,880 kW<sub>el</sub> is also achieved with natural gas

# Technical data 50 Hz ( $NO_x \le 500 \text{ mg/Nm}^{31}$ )

#### Natural gas applications

| TCG 3020 Series              |                   | V12             | V12             | V16      | V16             | V20      | V20             | V20              | V20              |
|------------------------------|-------------------|-----------------|-----------------|----------|-----------------|----------|-----------------|------------------|------------------|
| Configuration                |                   | P <sup>2]</sup> | R <sup>3]</sup> | $P^{2l}$ | R <sup>3]</sup> | $P^{2l}$ | R <sup>3]</sup> | PV <sup>4]</sup> | RV <sup>5)</sup> |
| Bore/stroke                  | mm                |                 |                 |          | 170,            | /195     |                 |                  |                  |
| Displacement                 | $dm^3$            | 53.0            | 53.0            | 71.0     | 71.0            | 89.0     | 89.0            | 89.0             | 89.0             |
| Engine speed                 | min <sup>-1</sup> |                 |                 |          | 1,5             | 00       |                 |                  |                  |
| Mean piston speed            | m/s               |                 |                 |          | 9               | .8       |                 |                  |                  |
| Length 6)                    | mm                | 5,080           | 5,080           | 6,100    | 6,100           | 6,600    | 6,600           | 6,983            | 6,983            |
| Width 6)                     | mm                |                 |                 |          | 1,8             | 315      |                 |                  |                  |
| Height 6)                    | mm                | 2,190           | 2,190           | 2,190    | 2,190           | 2,190    | 2,190           | 2,385            | 2,385            |
| Dry weight genset            | kg                | 12,900          | 12,900          | 17,400   | 17,400          | 21,400   | 21,400          | 16,965           | 16,965           |
| Electrical power 7)          | kW                | 1,380           | 1,380           | 1,840    | 1,840           | 2,300    | 2,300           | 2,000            | 2,000            |
| Mean effective pressure      | bar               | 21.5            | 21.5            | 21.5     | 21.5            | 21.5     | 21.5            | 18.6             | 18.6             |
| Thermal output <sup>8]</sup> | ±8% kW            | 1,296           | 1,369           | 1,755    | 1,824           | 2,164    | 2,281           | 1,949            | 2,026            |
| Electrical efficiency 7)     | %                 | 45.0            | 44.0            | 44.7     | 44.0            | 45.0     | 44.0            | 44.4             | 43.7             |
| Thermal efficiency 7)        | %                 | 42.3            | 43.6            | 42.6     | 43.6            | 42.3     | 43.6            | 43.3             | 44.2             |
| Total efficiency 7)          | %                 | 87.3            | 87.6            | 87.3     | 87.6            | 87.3     | 87.6            | 87.7             | 87.9             |

#### **Biogas applications**

Sewage gas (65% CH<sub>4</sub> / 35% CO<sub>2</sub>) Biogas (50% CH<sub>4</sub> / 50% CO<sub>2</sub>) Landfill gas  $(50\% CH_4 / 27\% CO_2, Rest N_2)$ 

| TCG 3020 Series              |                   | V12            | V16            | V20            | V20               |
|------------------------------|-------------------|----------------|----------------|----------------|-------------------|
| Configuration                |                   | X <sup>9</sup> | $X_{\delta J}$ | $X_{\delta J}$ | XV <sup>10]</sup> |
| Bore/stroke                  | mm                |                | 170,           | /195           |                   |
| Displacement                 | $dm^3$            | 53.0           | 71.0           | 89.0           | 89.0              |
| Engine speed                 | min <sup>-1</sup> |                | 1,5            | 500            |                   |
| Mean piston speed            | m/s               |                | 9              | .8             |                   |
| Length 6)                    | mm                | 5,080          | 6,100          | 6,600          | 6,983             |
| Width 6]                     | mm                |                | 1,8            | 315            |                   |
| Height 6]                    | mm                | 2,190          | 2,190          | 2,190          | 2,385             |
| Dry weight genset            | kg                | 12,900         | 17,400         | 21,400         | 16,965            |
| Electrical power 7)          | kW                | 1,380          | 1,840          | 2,300          | 2,000             |
| Mean effective pressure      | bar               | 21.5           | 21.5           | 21.5           | 18.6              |
| Thermal output <sup>8]</sup> | ±8% kW            | 1,351          | 1,802          | 2,254          | 2,015             |
| Electrical efficiency 7]     | %                 | 43.6           | 43.6           | 43.6           | 43.2              |
| Thermal efficiency 7]        | %                 | 42.7           | 42.7           | 42.9           | 43.5              |
| Total efficiency 7)          | %                 | 86.3           | 86.3           | 86.5           | 86.7              |
|                              |                   |                |                |                |                   |

 $\label{eq:defData} \mbox{Data for special gases and dual gas operation on request.}$ 

The values given on these datasheets are for information purposes only and not binding. The information given in the offer is decisive

<sup>1)</sup> NO<sub>3</sub> s 500 mg/Nm³; exhaust gas dry at 5% O<sub>2</sub>.
2) P = High Efficiency. Optimized for high electrical efficiency.
3) R = High Response. Optimized for high total efficiency.
4) PV = High Efficiency for Requested Power. Optimized for high electrical efficiency at requested power.
5) RV = High Response for Requested Power. Optimized for high total efficiency at requested power.

for high total efficiency at requested power.

6) Transport dimensions for gensets, components set up separately must be taken into consideration.

<sup>7)</sup> According to ISO 8528-1 at U = 0.4 kV, cosphi = 1.0 for 50 Hz, a methane number of MN 80 for natural gas and MN 134 (sewage gas) for biogas applications.

8) Exhaust gas cooled to 120 °C for natural gas and 150 °C for biogas.

9) X = Biogas. Optimized for operation with biogases.

10) XV = Biogas for Requested Power. Optimized for operation with biogases at requested power.

### Technical data 60 Hz

#### Natural gas applications

 $(NO_x \le 500 \text{ mg/Nm}^{3^{1}})$ 

 $(NO_x \le 250 \text{ mg/Nm}^{3^{1}})$ 

| TCG 3020 Series                |                   | V20             | V20             | V20      | V20              | V20             | V20             | V20      | V20              |
|--------------------------------|-------------------|-----------------|-----------------|----------|------------------|-----------------|-----------------|----------|------------------|
| Configuration                  |                   | P <sup>2]</sup> | R <sup>3]</sup> | $PV^{4}$ | RV <sup>5)</sup> | P <sup>2]</sup> | R <sup>3]</sup> | $PV^{4}$ | RV <sup>5)</sup> |
| Bore/stroke                    | mm                | 170/195         |                 |          |                  | 170/195         |                 |          |                  |
| Displacement                   | $dm^3$            | 89              |                 |          |                  | 89              |                 |          |                  |
| Engine speed                   | min <sup>-1</sup> |                 | 1,5             | 500      |                  | 1,500           |                 |          |                  |
| Mean piston speed              | m/s               |                 | 9               | .8       |                  |                 | 9.              | .8       |                  |
| Length 6)                      | mm                |                 | 7,7             | '38      |                  |                 | 7,7             | 38       |                  |
| Width 6)                       | mm                | 1,815           |                 |          |                  | 1,815           |                 |          |                  |
| Height 6]                      | mm                | 2,551           |                 |          |                  | 2,551           |                 |          |                  |
| Dry weight genset              | kg                | 21,200          |                 |          | 21,200           |                 |                 |          |                  |
| Electrical power <sup>7]</sup> | kW                | 2,300           | 2,300           | 2,000    | 2,000            | 2,300           | 2,300           | 2,000    | 2,000            |
| Mean effective pressure        | bar               | 21.5            | 21.5            | 18.7     | 18.7             | 21.5            | 21.5            | 18.7     | 18.7             |
| Thermal output <sup>8)</sup>   | ±8% kW            | 2,201           | 2,292           | 1,982    | 2,038            | 2,294           | 2,403           | 2,065    | 2,136            |
| Electrical efficiency 7]       | %                 | 44.4            | 43.7            | 43.9     | 43.4             | 43.5            | 42.6            | 42.9     | 42.3             |
| Thermal efficiency 7]          | %                 | 42.5            | 43.6            | 43.5     | 44.2             | 43.3            | 44.6            | 44.3     | 45.2             |
| Total efficiency 7)            | %                 | 86.9            | 87.3            | 87.4     | 87.6             | 86.8            | 87.2            | 87.2     | 87.5             |
|                                |                   |                 |                 |          |                  |                 |                 |          |                  |

#### **Biogas applications**

Sewage gas  $(65\% CH_4/35\% CO_2)$ Biogas (50% CH<sub>4</sub> / 50% CO<sub>2</sub>) Landfill gas  $(50\% CH_4/27\% CO_2, Rest N_2)$ 

 $(NO_{v} \le 500 \text{ mg/Nm}^{3 \text{ 1}})$   $(NO_{v} \le 250 \text{ mg/Nm}^{3 \text{ 1}})$ 

| mm                | <b>V20</b><br>X <sup>9]</sup>    | <b>V20</b><br>XV <sup>10]</sup>                                                            | <b>V20</b> X <sup>9]</sup>                                                                                                      | V20<br>XV <sup>10]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------|----------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mm                | , ,                              | XV <sup>10]</sup>                                                                          | X <sup>9]</sup>                                                                                                                 | V\/101                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mm                | 170                              |                                                                                            |                                                                                                                                 | ∧ V · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 1/0/                             | /195                                                                                       | 170,                                                                                                                            | /195                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $dm^3$            | 8                                | 9                                                                                          | 8                                                                                                                               | 9                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| min <sup>-1</sup> | 1,5                              | 000                                                                                        | 1,5                                                                                                                             | 500                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| m/s               | 9.                               | .8                                                                                         | 9                                                                                                                               | .8                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mm                | 7,7                              | '38                                                                                        | 7,7                                                                                                                             | '38                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mm                | 1,8                              | 315                                                                                        | 1,8                                                                                                                             | 315                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mm                | 2,5                              | 551                                                                                        | 2,551                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| kg                | 21,2                             | 21,200 21,20                                                                               |                                                                                                                                 | 200                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| kW                | 2,300                            | 2,000                                                                                      | 2,300                                                                                                                           | 2,000                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| bar               | 21.5                             | 18.7                                                                                       | 21.5                                                                                                                            | 18.7                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8% kW             | 2,206                            | 1,983                                                                                      | 2,293                                                                                                                           | 2,060                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| %                 | 43.1                             | 42.7                                                                                       | 42.2                                                                                                                            | 41.7                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| %                 | 41.4                             | 42.3                                                                                       | 42                                                                                                                              | 43                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| %                 | 84.5                             | 85.0                                                                                       | 84.2                                                                                                                            | 84.7                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | min-1 m/s mm mm kg kW bar 8 % kW | min-1 1,5 m/s 9. mm 7,7 mm 1,8 mm 2,5 kg 21,7 kW 2,300 bar 21.5 8 % kW 2,206 % 43.1 % 41.4 | min-1 1,500 m/s 9.8 mm 7,738 mm 1,815 mm 2,551 kg 21,200 kW 2,300 2,000 bar 21.5 18.7 8% kW 2,206 1,983 % 43.1 42.7 % 41.4 42.3 | min-1       1,500       1,5         m/s       9.8       9.8         mm       7,738       7,7         mm       1,815       1,8         mm       2,551       2,5         kg       21,200       21,3         kW       2,300       2,000       2,300         bar       21.5       18.7       21.5         8%       kW       2,206       1,983       2,293         %       43.1       42.7       42.2         %       41.4       42.3       42 |

#### Propane gas applications

 $(NO_{\chi} \le 250 \text{ mg/Nm}^{3})$ 

| V20              |  |
|------------------|--|
| Z <sup>11]</sup> |  |
| 170/195          |  |
| 89               |  |
| 1,500            |  |
| 9.8              |  |
| 7,738            |  |
| 1,815            |  |
| 2,551            |  |
| 21,200           |  |
| 1,880            |  |
| 17.6             |  |
| 2,078            |  |
| 41.5             |  |
| 45.8             |  |
| 87.3             |  |
|                  |  |

Exhaust gas dry at 5 % 0<sub>2</sub>.
 P = High Efficiency. Optimized for high electrical

P = High Efficiency. Optimized for high total efficiency.
 R = High Response. Optimized for high total efficiency.
 PV = High Efficiency for Requested Power. Optimized for high electrical efficiency at requested power.
 RV = High Response for Requested Power. Optimized for high total efficiency at requested power.

<sup>6)</sup> Transport dimensions for gensets, components set up separately must be taken into consideration.

<sup>7)</sup> According to ISO 8528-1 at U = 0.4 kV, cosphi = 1.0 for 60 Hz, a methane number of MN 80 for natural gas, MN 34 for propane and MN 134 (sewage gas) for biogas applications.

<sup>8)</sup> Exhaust gas cooled to 120 °C for natural gas and 150 °C for biogas.

X = Biogas. Optimized for operation with biogases.
 X = Biogas for Requested Power. Optimized for operation with biogases at requested power.

<sup>11)</sup> Z = Propane. Optimized for operation with propane.

Data for special gases and dual gas operation

The values given on these datasheets are for information purposes only and not binding. The information given in the offer is decisive.

# TPEM. The door to the digital age.

With its comprehensive digital power plant control TPEM (Total Plant & Energy Management), MWM redefines the control standard for energy solutions.

TPEM eliminates the need for additional control systems, as all power plant data for the genset and plant control are combined in one system. The optimum power plant control enables high economic efficiency, provided from a single source.



#### Modern -

- ✓ One integrated, flexible control system for all electric power generation applications including genset, generator, electric system, and balance of plant
- ✓ State-of-the-art touchscreen user interface with integrated service tool





#### Connected

- ✓ Integrated remote access for all operation and service tasks
- ✓ Various interfaces for integration with existing control systems



#### **Efficient**

- Optimized service tool for commissioning, maintenance, and repairs
- Multiple configurable functions for tailored solutions
- Guided commissioning and service tasks

#### State-of-the-art system: economical, efficient and complete

- One user interface
  - ✓ Complete power plant control and setup
- Connectivity solutions
  - ✓ Remote plant control with free "TPEM Remote client" software and extensive monitoring and analytics options with "MWM RAM" subscription
- Security-oriented technology
  - ✓ Safety chain for cogeneration plant monitoring

scan the QR code or visit the website

For additional MWM locations,

www.mwm.net/en/mwmworldwide

#### Caterpillar Energy Solutions GmbH

Carl-Benz-Str. 1 68167 Mannheim, Germany

T: +49 621 384-0

F: +49 621 384-8800

E: info@mwm.net www.mwm.net

